Python Базы данных

Python Базы данных — обширные хранилища информации.

Пламенный привет посетителям этой страницы, пришедшим из социальных сетей, да и всем остальным тоже! В апреле 2021-го года наблюдал удивительное явление: обильный поток посетителей из 4-х социальных сетей. В связи с этим настоятельно рекомендую всем неоднократно и регулярно посещать сайт rtbsm.ru — там в общих чертах изложена Российская Теннисная Балльная Система Марии (Шараповой).

Приглашаю всех полюбоваться на Фото и Видео красавицы Марии — надеюсь, что Вы поделитесь адресом сайта rtbsm.ru с друзьями и знакомыми.

Главная проблема — известить Марию, чтобы она лично как можно скорее заявила на весь мир о РТБСМ.

Python Базы данных — до сих пор нет общепринятого строгого определения Базы данных, поэтому попытаюсь разобраться с этим важным понятием, используя Интернет.

Вот информация про Базы данных из Википедии:

База данных

База данных — представленная в объективной форме совокупность самостоятельных материалов (статей, расчётов, нормативных актов, судебных решений и иных подобных материалов), систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

Многие специалисты указывают на распространённую ошибку, состоящую в некорректном использовании термина «база данных» вместо термина «система управления базами данных», и указывают на необходимость различения этих понятий.

Содержание

  • 1 Проблемы определения
  • 2 История
  • 3 Виды баз данных
    • 3.1 Классификация по модели данных
    • 3.2 Классификация по среде постоянного хранения
    • 3.3 Классификация по содержимому
    • 3.4 Классификация по степени распределённости
    • 3.5 Другие виды БД
  • 4 Сверхбольшие базы данных
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

Проблемы определения

В литературе предлагается множество определений понятия «база данных», отражающих скорее субъективное мнение тех или иных авторов, однако общепризнанная единая формулировка отсутствует.

Определения из международных стандартов:

  • База данных — совокупность данных, хранимых в соответствии со схемой данных, манипулирование которыми выполняют в соответствии с правилами средств моделирования данных.
  • База данных — совокупность данных, организованных в соответствии с концептуальной структурой, описывающей характеристики этих данных и взаимоотношения между ними, причём такое собрание данных, которое поддерживает одну или более областей применения.

Определения из авторитетных монографий:

  • База данных — организованная в соответствии с определёнными правилами и поддерживаемая в памяти компьютера совокупность данных, характеризующая актуальное состояние некоторой предметной области и используемая для удовлетворения информационных потребностей пользователей.
  • База данных — некоторый набор перманентных (постоянно хранимых) данных, используемых прикладными программными системами какого-либо предприятия.
  • База данных — совместно используемый набор логически связанных данных (и описание этих данных), предназначенный для удовлетворения информационных потребностей организации.

В определениях наиболее часто (явно или неявно) присутствуют следующие отличительные признаки:

  1. БД хранится и обрабатывается в вычислительной системе.
    Таким образом, любые внекомпьютерные хранилища информации (архивы, библиотеки, картотеки и т. п.) базами данных не являются.
  2. Данные в БД логически структурированы (систематизированы) с целью обеспечения возможности их эффективного поиска и обработки в вычислительной системе.
    Структурированность подразумевает явное выделение составных частей (элементов), связей между ними, а также типизацию элементов и связей, при которой с типом элемента (связи) соотносится определённая семантика и допустимые операции.
  3. БД включает схему, или метаданные, описывающие логическую структуру БД в формальном виде (в соответствии с некоторой метамоделью).
    В соответствии с ГОСТ Р ИСО МЭК ТО 10032-2007, «постоянные данные в среде базы данных включают в себя схему и базу данных. Схема включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных. База данных включает в себя набор постоянных данных, определённых с помощью схемы. Система управления данными использует определения данных в схеме для обеспечения доступа и управления доступом к данным в базе данных».

Из перечисленных признаков только первый является строгим, а другие допускают различные трактовки и различные степени оценки. Можно лишь установить некоторую степень соответствия требованиям к БД.

В такой ситуации не последнюю роль играет общепринятая практика. В соответствии с ней, например, не называют базами данных файловые архивыИнтернет-порталы или электронные таблицы, несмотря на то, что они в некоторой степени обладают признаками БД. Принято считать, что эта степень в большинстве случаев недостаточна (хотя могут быть исключения).

История

История возникновения и развития технологий баз данных может рассматриваться как в широком, так и в узком аспекте.

В широком смысле понятие истории баз данных обобщается до истории любых средств, с помощью которых человечество хранило и обрабатывало данные. В таком контексте упоминаются, например, средства учёта царской казны и налогов в древнем Шумере (4000 г. до н. э.), узелковая письменность инков — кипу, клинописи, содержащие документы Ассирийского царства и т. п. Следует помнить, что недостатком этого подхода является размывание понятия «база данных» и фактическое его слияние с понятиями «архив» и даже «письменность».

История баз данных в узком смысле рассматривает базы данных в традиционном (современном) понимании. Эта история начинается с 1955 года, когда появилось программируемое оборудование обработки записей. Программное обеспечение этого времени поддерживало модель обработки записей на основе файлов. Для хранения данных использовались перфокарты.

Оперативные сетевые базы данных появились в середине 1960-х. Операции над оперативными базами данных обрабатывались в интерактивном режиме с помощью терминалов. Простые индексно-последовательные организации записей быстро развились к более мощной модели записей, ориентированной на наборы. За руководство работой Data Base Task Group (DBTG), разработавшей стандартный язык описания данных и манипулирования данными, Чарльз Бахман получил Тьюринговскую премию.

В это же время в сообществе баз данных COBOL была проработана концепция схем баз данных и концепция независимости данных.

Следующий важный этап связан с появлением в начале 1970-х реляционной модели данных, благодаря работам Эдгара Ф. Кодда. Работы Кодда открыли путь к тесной связи прикладной технологии баз данных с математикой и логикой. За свой вклад в теорию и практику Эдгар Ф. Кодд также получил премию Тьюринга.

Сам термин база данных (англ. database) появился в начале 1960-х годов, и был введён в употребление на симпозиумах, организованных компанией SDC в 1964 и 1965 годах, хотя понимался сначала в довольно узком смысле, в контексте систем искусственного интеллекта. В широкое употребление в современном понимании термин вошёл лишь в 1970-е годы.

Виды баз данных

Существует огромное количество разновидностей баз данных, отличающихся по различным критериям. Например, в «Энциклопедии технологий баз данных», по материалам которой написан данный раздел, определяются свыше 50 видов БД.

Основные классификации приведены ниже.

Классификация по модели данных

Примеры:

  • Иерархическая
  • Объектная и объектно-ориентированная
  • Объектно-реляционная
  • Реляционная
  • Сетевая
  • Функциональная.

Классификация по среде постоянного хранения

  • Во вторичной памяти, или традиционная (англ. conventional database): средой постоянного хранения является периферийная энергонезависимая память (вторичная память) — как правило жёсткий диск.
    В оперативную память СУБД помещает лишь кеш и данные для текущей обработки.
  • В оперативной памяти (англ. in-memory database, memory-resident database, main memory database): все данные на стадии исполнения находятся в оперативной памяти.
  • В третичной памяти (англ. tertiary database): средой постоянного хранения является отсоединяемое от сервера устройство массового хранения (третичная память), как правило на основе магнитных лент или оптических дисков.
    Во вторичной памяти сервера хранится лишь каталог данных третичной памяти, файловый кеш и данные для текущей обработки; загрузка же самих данных требует специальной процедуры.

Классификация по содержимому

Примеры:

  • Географическая
  • Историческая
  • Научная
  • Мультимедийная
  • Клиентская.

Классификация по степени распределённости

  • Централизованная, или сосредоточенная (англ. centralized database): БД, полностью поддерживаемая на одном компьютере.
  • Распределённая (англ. distributed database): БД, составные части которой размещаются в различных узлах компьютерной сети в соответствии с каким-либо критерием.
    • Неоднородная (англ. heterogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами более одной СУБД.
    • Однородная (англ. homogeneous distributed database): фрагменты распределённой БД в разных узлах сети поддерживаются средствами одной и той же СУБД.
    • Фрагментированная, или секционированная (англ. partitioned database): методом распределения данных является фрагментирование (партиционирование, секционирование), вертикальное или горизонтальное.
    • Тиражированная (англ. replicated database): методом распределения данных является тиражирование (репликация).

Другие виды БД

  • Пространственная (англ. spatial database): БД, в которой поддерживаются пространственные свойства сущностей предметной области. Такие БД широко используются в геоинформационных системах.
  • Временная, или темпоральная (англ. temporal database): БД, в которой поддерживается какой-либо аспект времени, не считая времени, определяемого пользователем.
  • Пространственно-временная (англ. spatial-temporal database) БД: БД, в которой одновременно поддерживается одно или более измерений в аспектах как пространства, так и времени.
  • Циклическая (англ. round-robin database): БД, объём хранимых данных которой не меняется со временем, поскольку в процессе сохранения новых данных они заменяют более старые данные. Одни и те же ячейки для данных используются циклически.

Сверхбольшие базы данных

Сверхбольшая база данных (англ. Very Large Database, VLDB) — это база данных, которая занимает чрезвычайно большой объём на устройстве физического хранения. Термин подразумевает максимально возможные объёмы БД, которые определяются последними достижениями в технологиях физического хранения данных и в технологиях программного оперирования данными.

Количественное определение понятия «чрезвычайно большой объём» меняется во времени. Так, в 1997 году самой большой в мире была текстовая база данных Knight Ridder’s DIALOG объёмом 7 терабайт. В 2001 году самой большой считалась база данных объёмом 10,5 терабайт, в 2003 году — объёмом 25 терабайт. В 2005 году самыми крупными в мире считались базы данных с объёмом хранилища порядка сотни терабайт. В 2006 году поисковая машина Google использовала базу данных объёмом 850 терабайт.

К 2010 году считалось, что объём сверхбольшой базы данных должен измеряться по меньшей мере петабайтами.

К 2014 году по косвенным оценкам компания Google хранила на своих серверах до 10—15 эксабайт данных в совокупности.

По некоторым оценкам, к 2025 году генетики будут располагать данными о геномах от 100 миллионов до 2 миллиардов человек, и для хранения подобного объёма данных потребуется от 2 до 40 эксабайт.

Специалисты отмечают необходимость особых подходов к проектированию сверхбольших БД. Для их создания нередко выполняются специальные проекты с целью поиска таких системотехнических решений, которые позволили бы хоть как-то работать с такими большими объёмами данных. Как правило, необходимы специальные решения для дисковой подсистемы, специальные версии операционной среды и специальные механизмы обращения СУБД к данным.

Исследования в области хранения и обработки сверхбольших баз данных VLDB всегда находятся на острие теории и практики баз данных.

Для взаимодействия с Базой данных нужна

Система управления базами данных

Система управления базами данных (СУБД) — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных.

Содержание

  • 1 Основные функции СУБД
  • 2 Состав СУБД
  • 3 Классификации СУБД
  • 4 Стратегии работы с внешней памятью
  • 5 См. также
  • 6 Примечания
  • 7 Литература
  • 8 Ссылки

Основные функции СУБД

  • управление данными во внешней памяти (на дисках);
  • управление данными в оперативной памяти с использованием дискового кэша;
  • журнализация изменений, резервное копирование и восстановление базы данных после сбоев;
  • поддержка языков БД (язык определения данных, язык манипулирования данными).

Состав СУБД

Обычно современная СУБД содержит следующие компоненты:

  • ядро, которое отвечает за управление данными во внешней и оперативной памяти и журнализацию,
  • процессор языка базы данных, обеспечивающий оптимизацию запросов на извлечение и изменение данных и создание, как правило, машинно-независимого исполняемого внутреннего кода,
  • подсистему поддержки времени исполнения, которая интерпретирует программы манипуляции данными, создающие пользовательский интерфейс с СУБД
  • а также сервисные программы (внешние утилиты), обеспечивающие ряд дополнительных возможностей по обслуживанию информационной системы

Классификации СУБД

По модели данных Примеры:

  • Иерархические
  • Сетевые
  • Реляционные
  • Объектно-ориентированные
  • Объектно-реляционные

По степени распределённости

  • Локальные СУБД (все части локальной СУБД размещаются на одном компьютере)
  • Распределённые СУБД (части СУБД могут размещаться не только на одном, но на двух и более компьютерах).

По способу доступа к БД

  • Файл-серверные

В файл-серверных СУБД файлы данных располагаются централизованно на файл-сервере. СУБД располагается на каждом клиентском компьютере (рабочей станции). Доступ СУБД к данным осуществляется через локальную сеть. Синхронизация чтений и обновлений осуществляется посредством файловых блокировок. Преимуществом этой архитектуры является низкая нагрузка на процессор файлового сервера. Недостатки: потенциально высокая загрузка локальной сети; затруднённость или невозможность централизованного управления; затруднённость или невозможность обеспечения таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность. Применяются чаще всего в локальных приложениях, которые используют функции управления БД; в системах с низкой интенсивностью обработки данных и низкими пиковыми нагрузками на БД. На данный момент файл-серверная технология считается устаревшей, а её использование в крупных информационных системах — недостатком. Примеры: Microsoft Access, Paradox, dBase, FoxPro, Visual FoxPro.

  • Клиент-серверные

Клиент-серверная СУБД располагается на сервере вместе с БД и осуществляет доступ к БД непосредственно, в монопольном режиме. Все клиентские запросы на обработку данных обрабатываются клиент-серверной СУБД централизованно.

Недостаток клиент-серверных СУБД состоит в повышенных требованиях к серверу. Достоинства: потенциально более низкая загрузка локальной сети; удобство централизованного управления; удобство обеспечения таких важных характеристик, как высокая надёжность, высокая доступность и высокая безопасность.

Примеры: Oracle Database, Firebird, Interbase, IBM DB2, Informix, MS SQL Server, Sybase Adaptive Server Enterprise, PostgreSQL, MySQL, Caché, ЛИНТЕР.

  • Встраиваемые

Встраиваемая СУБД — СУБД, которая может поставляться как составная часть некоторого программного продукта, не требуя процедуры самостоятельной установки.

Встраиваемая СУБД предназначена для локального хранения данных своего приложения и не рассчитана на коллективное использование в сети. Физически встраиваемая СУБД чаще всего реализована в виде подключаемой библиотеки.

Доступ к данным со стороны приложения может происходить через SQL либо через специальные программные интерфейсы.

Примеры: OpenEdge, SQLite, BerkeleyDB, Firebird Embedded, Microsoft SQL Server Compact, ЛИНТЕР.

Стратегии работы с внешней памятью

СУБД с непосредственной записью. В таких СУБД все изменённые блоки данных незамедлительно записываются во внешнюю память при поступлении сигнала подтверждения любой транзакции. Такая стратегия используется только при высокой эффективности внешней памяти.

СУБД с отложенной записьюВ таких СУБД изменения аккумулируются в буферах внешней памяти до наступления любого из следующих событий:

  • Контрольная точка.
  • Нехватка пространства во внешней памяти, отведенного под журнал. СУБД создаёт контрольную точку и начинает писать журнал сначала, затирая предыдущую информацию.
  • Останов. СУБД ждёт, когда всё содержимое всех буферов внешней памяти будет перенесено во внешнюю память, после чего делает отметки, что останов базы данных выполнен корректно.
  • Нехватка оперативной памяти для буферов внешней памяти.

Такая стратегия позволяет избежать частого обмена с внешней памятью и значительно увеличить эффективность работы СУБД.

Мой сайт использует Систему Управления Базами Данных MySQL, поэтому именно она представляет для меня наибольший интерес.

MySQL


Тип - реляционная СУБД
Разработчик — MySQL AB (до 2008),
Sun Microsystems (2008—2010),
Oracle (с 2010)
Написана на Си и C++
Операционная система - кросс-платформенное программное обеспечение
Первый выпуск - 23 мая 1995
Последняя версия - 5.7.17 (12 декабря 2016)
Тестовая версия - 5.7.9 GA (21 октября 2015)
Лицензия — GNU GPL и лицензия несвободного программного обеспечения
Сайт - mysql.com

MySQL (МФА: [maɪ ˌɛskjuːˈɛl]) — свободная реляционная система управления базами данных.

Разработку и поддержку MySQL осуществляет корпорация Oracle, получившая права на торговую марку вместе с поглощённой Sun Microsystems, которая ранее приобрела шведскую компанию MySQL AB.

Продукт распространяется как под GNU General Public License, так и под собственной коммерческой лицензией. Помимо этого, разработчики создают функциональность по заказу лицензионных пользователей. Именно благодаря такому заказу почти в самых ранних версиях появился механизм репликации.

MySQL является решением для малых и средних приложений. Входит в состав серверов WAMP, AppServ, LAMP и в портативные сборки серверов Денвер, XAMPP, VertrigoServ.

Обычно MySQL используется в качестве сервера, к которому обращаются локальные или удалённые клиенты, однако в дистрибутив входит библиотека внутреннего сервера, позволяющая включать MySQL в автономные программы.

Гибкость СУБД MySQL обеспечивается поддержкой большого количества типов таблиц: пользователи могут выбрать как таблицы типа MyISAM, поддерживающие полнотекстовый поиск, так и таблицы InnoDB, поддерживающие транзакции на уровне отдельных записей.

Более того, СУБД MySQL поставляется со специальным типом таблиц EXAMPLE, демонстрирующим принципы создания новых типов таблиц. Благодаря открытой архитектуре и GPL-лицензированию, в СУБД MySQL постоянно появляются новые типы таблиц.

26 февраля 2008 года Sun Microsystems приобрела MySQL AB за 1 млрд долларов, 27 января 2010 года Oracle приобрела Sun Microsystems за 7,4 млрд долларов и включила MySQL в свою линейку СУБД.

Сообществом разработчиков MySQL созданы различные ответвления кода, такие как Drizzle (англ.), OurDelta, Percona Server и MariaDB. Все эти ответвления уже существовали на момент поглощения компании Sun корпорацией Oracle.

Содержание

  • 1 О происхождении MySQL
  • 2 Лицензирование
  • 3 Платформы
  • 4 Языки программирования
  • 5 История выпусков
  • 6 Технические характеристики
    • 6.1 Максимальные размеры таблиц
  • 7 Локализация
    • 7.1 Проблема с Юникод

О происхождении MySQL

MySQL возникла как попытка применить mSQL к собственным разработкам компании: таблицам, для которых использовались ISAM — подпрограммы низкого уровня.

В результате был выработан новый SQL-интерфейс, но API-интерфейс остался в наследство от mSQL. Откуда происходит название «MySQL» — доподлинно неизвестно.

Разработчики дают два варианта: либо потому, что практически все наработки компании начинались с префикса My, либо в честь девочки по имени My, дочери Майкла Монти Видениуса, одного из разработчиков системы.

Логотип MySQL в виде дельфина носит имя «Sakila». Он был выбран из большого списка предложенных пользователями «имён дельфина». Имя «Sakila» было отправлено Open Source-разработчиком Ambrose Twebaze.

Лицензирование

MySQL имеет двойное лицензирование.

MySQL может распространяться в соответствии с условиями лицензии GPL. Однако по условиям GPL, если какая-либо программа использует библиотеки (или включает в себя другой GPL-код) MySQL, то она тоже должна распространяться по лицензии GPL.

Это может расходиться с планами разработчиков, не желающих открывать исходные тексты своих программ. Для таких случаев предусмотрена коммерческая лицензия, которая также обеспечивает качественную сервисную поддержку.

Для свободного программного обеспечения Oracle предоставляет отдельное исключение из правил, явным образом разрешающее использование и распространение MySQL вместе с ПО, распространяемым под лицензией из определённого Oracle списка.

Платформы

MySQL портирована на большое количество платформ: AIX, BSDi, FreeBSD, HP-UX, Linux, Mac OS X, NetBSD, OpenBSD, OS/2 Warp, SGI IRIX, Solaris, SunOS, SCO OpenServer, UnixWare, Tru64, Windows 95, Windows 98, Windows NT, Windows 2000, Windows XP, Windows Server 2003, WinCE, Windows Vista, Windows 7 и Windows 10.

Существует также порт MySQL к OpenVMS. Важно отметить, что на официальном сайте СУБД для свободной загрузки предоставляются не только исходные коды, но и откомпилированные и оптимизированные под конкретные операционные системы готовые исполняемые модули СУБД MySQL.

Языки программирования

MySQL имеет API для языков Delphi, C, C++, Эйфель, Java, Лисп, Perl, PHP, Python, Ruby, Smalltalk, Компонентный Паскаль и Tcl, библиотеки для языков платформы .NET, а также обеспечивает поддержку для ODBC посредством ODBC-драйвера MyODBC.

MyODBC представляет собой драйвер ODBC (2.50) уровня 0 (с некоторыми возможностями уровней 1 и 2) для подсоединения совместимого с ODBC приложения к MySQL. MyODBC работает на всех системах Microsoft Windows и на большинстве платформ Unix.

История выпусков

  • Первый внутренний выпуск MySQL состоялся 23 мая 1995 года.
  • Версия 5.5: релиз в декабре 2010.
  • Версия 5.6: в разработке (5.6.6 m9 7 августа 2012).

MySQL 4.0

Несмотря на то, что версия 4.0 является устаревшей, она всё ещё имеет значительное распространение.

MySQL 5.0

Версия MySQL 5.0 вышла 24 октября 2005 года, в этой версии значительно расширена функциональность, которая ставит MySQL в один ряд с коммерческими СУБД.

Если раньше СУБД MySQL обвиняли в недостаточной поддержке стандарта SQL, то с появлением пятой версии этой популярной базы данных появилась практически полная поддержка стандарта SQL.

MySQL 5.5

Ветка MySQL 5.5 базируется на невыпущенной серии MySQL 5.4 и содержит ряд значительных улучшений, связанных с повышением масштабируемости и производительности.

MySQL 6.0

Версия MySQL 6.0 была заморожена на стадии альфа-тестирования. Первоначально было принято решение о создании версии 5.2, вскоре эта версия была переименована в 6.0. Однако позже информация о MySQL 6.0 исчезла с сайта, а разработчики сосредоточились на версии 5.5 и следующей за ней версии 5.6.

MySQL 5.6

Стабильный релиз ветки MySQL 5.6 анонсирован 5 февраля 2013.

MySQL 5.7

Первая версия ветки MySQL 5.7.1 анонсирована 23 апреля 2013. Версия MySQL 5.7.8 адаптирована для Debian 8 и Ubuntu 15.04.

Технические характеристики

Максимальные размеры таблиц

Максимальный размер таблиц в MySQL 3.22 до 4 гигабайт, в последующих версиях ограничений нет.

Размер таблицы ограничен её типом. В общем случае тип MyISAM ограничен предельным размером файла в файловой системе операционной системы. Например, в NTFS этот размер теоретически может быть до 32 эксабайт.

В случае InnoDB одна таблица может храниться в нескольких файлах, представляющих единое табличное пространство. Размер последнего может достигать 64 терабайт.

В отличие от MyISAM, в InnoDB имеется значительное ограничение на количество столбцов, которое можно добавить в одну таблицу.

Размер страницы памяти по умолчанию составляет 16 килобайт, из которых под данные отведено 8123 байта. Размер указателя на динамические поля составляет 20 байт.

Таким образом, в случае использования динамического формата строки (ROW_FORMAT=DYNAMIC), одна таблица может вместить максимум 409 столбцов типа blob или text.

Локализация

Начиная с версии 4.1 в СУБД MySQL внедрена новая система кодировок и сопоставлений. При использовании кодировки Windows-1251, перед выполнением SQL-инструкций необходимо настроить кодировку соединения при помощи операторов:

  SET character_set_client='cp1251';
  SET character_set_results='cp1251'; 
  SET character_set_connection='cp1251';

Эти три оператора эквивалентны вызову одного оператора:

  SET NAMES 'cp1251'

Переменная character_set_client устанавливает кодировку данных, отправляемых от клиента, переменная character_set_results устанавливает кодировку данных, отправляемых клиенту, переменная character_set_connection устанавливает кодировку, в которую преобразуется информация, пришедшая от клиента, перед выполнением запроса на сервере.

При использовании Юникода UTF-8 этот оператор выглядит следующим образом:

  SET NAMES 'utf8'

Кодировка ISO 8859-5 не поддерживается.

Проблема с Юникод

MySQL не позволяет корректно применять регулярные выражения (операторы REGEXP и RLIKE) на строках в многобайтовых кодировках, например, для Юникода (UTF-8). При необходимости таких операций приходится переходить на однобайтовые кодировки, например русскую Win-1251 или KOI-8.

К этому абзацу страница содержит 3095-ть слов, но до сих пор нет чёткого объяснения термина SQL и ничего не сказано о главной особенности СУБД — индексировании.

Итак, что такое SQL?

SQL (ˈɛsˈkjuˈɛl; англ.  structured query language — «язык структурированных запросов») — формальный непроцедурный язык программирования, применяемый для создания, модификации и управления данными в произвольной реляционной базе данных, управляемой соответствующей системой управления базами данных (СУБД). SQL основывается на исчислении кортежей.

Обычно используется табличный метод построения БД: она состоит из множества записей, помещённых в строки таблицы, а по вертикали в таблице размещаются поля, куда вносят однородную информацию записей — например, рост, вес, возраст и т. д.

Разработка БД начинается с задания структуры БД, то есть, грубо говоря, названий в «шапке» полей. Таблица БД может быть разбита на несколько подтаблиц для упрощения взаимодействия с БД.

Что такое индекс БД?

Характеристика, облегчающая поиск информации в БД.

Как происходит индексирование БД?

Прежде всего выбирается поле, по которому происходит индексирование, причём индексирование может проводиться не по одному полю, а по совокупности полей — например, вместо индексации по полю Фамилия проводят индексацию по трём полям Фамилия, Имя, Отчество.

Надеюсь со временем полнее разобраться с БД, СУБД и индексами, а пока что вопросов больше, чем ответов. Хочу пообщаться со специалистом, чтобы не тратить время на поиск ответов в Интернете.

!…

Приглашаю всех высказываться в Комментариях. Критику и обмен опытом одобряю и приветствую. В хороших комментариях сохраняю ссылку на сайт автора!

И не забывайте, пожалуйста, нажимать на кнопки социальных сетей, которые расположены под текстом каждой страницы сайта.
Python Базы данныхПродолжение тут…

Deviz_6

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

Проверка комментариев включена. Прежде чем Ваши комментарии будут опубликованы пройдет какое-то время.